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Abstract

This work presents a new statistical linear calibration model
with replication by assuming that the error model follows
the family of scale mixtures of skew-normal distributions,
which is a class of asymmetric thick-tailed distributions that
includes the skew-normal distribution. In the literature, most
of calibration models assume that the errors are normally
distributed, however, the normal distribution is extremely
sensitive to atypical observations and asymmetry. The es-
timation of the model parameters are done numerically by
the EM algorithm. The new approach is applied to a real
data set from chemical analysis.

1. Introduction

The calibration models are usually composed of two stages.
In the first stage, dependent variables are observed in
function of pre-fixed independent variables. In the second
stage, only the dependent variables are observed in func-
tion of an unknown quantity. The relationship between the
both independent and dependent variable is established in
the two stages, thus the parameters model are estimated.
In chemical analysis, the purpose of the calibration model
is usually to establish a quantitative relation over the two
stages, for the first stage it is between several known con-
centrations and their corresponding signals, and on the se-
cond stage it is between an unknown concentration and
their corresponding signals, and the main interest is esti-
mate this unknown concentration (see Blas et al.,2007).
This paper discusses a new calibration model with repli-
cated response variable by assuming that the error model
follows a family of scale mixtures of skew-normal (SMSN)
distributions, as introduced by Branco and Dey (2001). Ca-
libration models in the literature largely assume that the e-
rrors are normally distributed, however, the normal distribu-
tion is not suitable in the presence of atypical or discordant
observations and also to the asymmetry.
We can say that a random variable Y follows a SMSN
distribution with location parameter µ, scale parameter σ2

and skewness parameter λ, and it can be denoted as
Y ∼ SMSN(µ, σ2, λ). The probability density function
(pdf) of Y is given by

f(y) = 2

∫ ∞
0

φ(y|µ, σ2κ(u))Φ

(
λ
y − µ
σ

)
dH(u; τ ),

where y ∈ IR, φ(.) denotes the density of univariate normal
distribution with mean µ and variance σ2 > 0 and Φ(.) is
the distribution function of the standard univariate normal
distribution. U is a random variable with distribution func-
tion H(., τ ) and density h(., τ ) and τ is a scalar or vector
parameter indexing the distribution of U. In this work we
consider κ(u) = 1/u, which leads to good mathematical
properties.
The SMSN family is a flexible class of distributions for ro-
bust estimation since it contains asymmetric distributions
and all the symmetric class of scale mixture normal(SMN)
distributions. One particular case is the skew-normal (SN)
distribution which is arrived when H is degenerated, with
u = 1. The SMSN class also includes distributions such as
the skew-t (ST), skew-slash (SSL) and the skew-potential
exponential(SPE) distribution.

2. Linear Calibration Model with SMSN Distributions
Error

The SMSN linear calibration model is given by

yij = α+ βxi + εij, i = 1, . . . , n, j = 1, . . . , ri, (1)
y0i = α+ βx0 + ε0i, i = n+ 1, . . . , n+m, (2)

where yij and y0i are observed responses for the fixed
value xi and the unknown quantity x0, respectively. α, β
and x0 are unknown parameters. εij and ε0i are indepen-
dent and identically distributed (iid) SMSN with 0 location
parameter, scale parameter σ2 and skewness parameter
λ. The EM algorithm for the proposed model parameters
are presented in the following.

The model (1-2) can be written hierarchically as

Yij|Tij = tij, Uij = uij
iid∼ N

(
α+ βxi + tij

σλκ(uij)√
s

,
σ2κ(uij)

s

)
Uij

iid∼ H(uij; τ ), Tij
iid∼ NH(0, 1), i = 1, . . . , n, j = 1, . . . , ri,

Y0i|T0i = t0i, U0i = u0i
iid∼ N

(
α+ βx0 + t0i

σλκ(u0i)
√
s0

,
σ2κ(u0i)

s0

)
U0i

iid∼ H(u0i; τ ), T0i
iid∼ HN(0, 1), i = n+ 1, . . . , n+m,

where HN(0, 1) denotes the half-N(0, 1) distribution,
s = 1 + λ2κ(uij) and s0 = 1 + λ2κ(u0i). The pa-
rameter τ from the mixing variable is fixed previously, as
recomended by Lange K. L. et al. (1989). Let yyy =
(yyy>1 , . . . , yyy

>
R), uuu = (u1, . . . , uR)>, ttt = (t1, . . . , tR)>,

y0y0y0 = (y01, . . . , y0m)>, u0u0u0 = (u01, . . . , u0m)>,
t0t0t0 = (t01, . . . , t0m)> and R =

∑n
i=1 ri. Then,

under the hierarchical model (1-2), it follows the com-
plete log-likelihood function `c(θθθ|ycycyc) associated with ycycyc =
(yyy>, y0y0y0

>,uuu>,u0u0u0
>, ttt>, t0t0t0>)>.

Let θθθ(p) = (α(p), β(p), σ2(p)
, λ(p), x

(p)
0 )> be the esti-

mates of θθθ at the pth iteration. It follows, after some sim-
ple algebra, that the conditional expectation of the complete
log-likelihood function has the form

Q(θθθ|θ̂θθ) = IE
[
`c(θθθ|ycycyc)|yyy,y0y0y0, θ̂θθ

(p)
]

= −R log σ2(p) −m log σ2(p)

−
1

2σ2(p)

n∑
i=1

ri∑
j=1

(yij − α(p) − β(p)xi)
2(κ̂ij

(p) + λ(p)2
)

−
1

2σ2(p)

n∑
i=1

ri∑
j=1

t̂2ij
(p)

+
λ(p)

σ2(p)

n∑
i=1

ri∑
j=1

(yij − α(p) − β(p)xi)t̂ij
(p)

−
1

2σ2(p)

n+m∑
i=n+1

(y0i − α(p) − β(p)x0
(p))2(κ̂0i

(p) + λ(p)2
)

−
1

2σ2(p)

n+m∑
i=n+1

t̂20i
(p)

+
λ(p)

σ2(p)

n+m∑
i=n+1

(y0i − α(p) − β(p)x0
(p))t̂0i

(p)
.

with t̂ij = IE(Tij|θθθ = θ̂θθ, yij), t̂2ij = IE(T 2
ij|θθθ = θ̂θθ, yij),

t̂0i = IE(T0i|θθθ = θ̂θθ, y0i) and t̂20i = IE(T 2
0i|θθθ = θ̂θθ, y0i).

Thus, we have the following EM algorithm steps:

E-step: Given θθθ = θ̂̂θ̂θ(p), compute t̂ij
(p)
, t̂2ij

(p)
, t̂0i

(p)
and

t̂20i

(p)
, where t̂ij = IE(Tij|θθθ = θ̂θθ, yij), t̂2ij = IE(T 2

ij|θθθ =

θ̂θθ, yij), t̂0i = IE(T0i|θθθ = θ̂θθ, y0i) and t̂20i = IE(T 2
0i|θθθ =

θ̂θθ, y0i).
M-step: Update θ̂̂θ̂θ(p+1) by maximizing Q(θθθ|θ̂θθ) over θθθ,
which leads to the following closed form expressions:

α̂(p+1) =

[
κ̂κκ(p)>1R1R1R + κ̂0κ0κ0

(p)>
1m1m1m + (R+m)λ(p)2

]−1

[(
yyy> − β(p)xxx>

)
κ̂κκ(p) + λ(p)

(
λ(p)yyy> − t̂tt

(p)>
− λ(p)β(p)xxx>

)
1R1R1R + y0y0y0

>κ̂0κ0κ0
(p)

+

(
λ(p)2

y0y0y0
> − λ(p)t̂0t0t0

(p)>
− β(p)x

(p)
0 κ̂0κ0κ0

(p)>
)

1m1m1m −mβ(p)x
(p)
0 λ(p)2

]
β̂(p+1) =

[
xxx>
(
DDD(κ̂̂κ̂κ(p)) + λ(p)2

IRIRIR
)
xxx+ x

(p)
0

2 (
κ̂0̂κ0̂κ0

(p)>1m1m1m + λ(p)2
m
)]−1

{
xxx>
[
DDD(κ̂̂κ̂κ(p))yyy − α(p)κ̂̂κ̂κ(p) + λ(p)2

(
yyy − α(p)1R1R1R

)
− λ(p)t̂̂t̂t(p)

]
+ x

(p)
0 ×[

yyy>0 κ̂0̂κ0̂κ0
(p) +

(
λ(p)2

y0y0y0
> − α(p)κ̂0̂κ0̂κ0

(p)> − λ(p)t̂0̂t0̂t0
(p)>

)
1m1m1m −mλ(p)2

α(p)
]}

σ̂2
(p+1)

= [2(R+m)]−1

[(
ηηη(p)>DDD(κ̂̂κ̂κ(p)) + λ(p)2

ηηη(p)> − 2λ(p)t̂̂t̂t(p)>
)
ηηη(p) + t̂2̂t2̂t2(p)

>
1R1R1R

+
(
η0η0η0

(p)>DDD(κ̂
(p)
0 ) + λ(p)2

η0η0η0
(p)> − 2λ(p)t̂0̂t0̂t0

(p)>
)
η0η0η0

(p) + t̂20̂t
2
0̂t
2
0
(p)
>
1m1m1m

]
λ̂(p+1) =

[
ηηη(p)>ηηη(p) + η0η0η0

(p)>η0η0η0
(p)
]−1 [

t̂̂t̂t(p)>ηηη(p) + t̂0̂t0̂t0
(p)>η0η0η0

(p)
]

x̂
(p+1)
0 =

[
β(p)

(
κ̂0̂κ0̂κ0

(p)>1m1m1m +mλ(p)2
)]−1[

y0y0y0
>κ̂0̂κ0̂κ0

(p) −
(
α(p)κ̂0̂κ0̂κ0

(p)> + λ(p)t̂0̂t0̂t0
(p)>

)
1m1m1m + λ(p)2

(
y0y0y0
>1m1m1m −mα(p)

)]
.

where ηηη(p) = yyy − α(p)1R1R1R − β(p)xxx, η0η0η0
(p) = y0y0y0 −(

α(p) + β(p)x
(p)
0

)
1m1m1m,DDD(AAA) = Diag(a1, a2, . . . ), 1k1k1k de-

notes an k-dimensional column vector of ones and IRIRIR is an
identity matrix of order R.
The Fisher-information matrix is used to calculate the co-
variance matrices associated to the maximum-likelihood
estimates.

3. Application

We fit the SMNS calibration model to the real data set dis-
cussed by Neto et al. (2007) which is given in Table 1. Tripli-
cate absorbance readings yiyiyi = (yi1, yi2, yi3) were taken
for each zinc standard concentration xi.

Table 1: Zinc concentration (mg/l) and triplicate absorbance
readings.

Concentration Absorbance
xi yi1 yi2 yi3
0.0 0.696 0.696 0.706
0.5 7.632 7.688 7.603
1.0 14.804 14.861 14.731
2.0 28.895 29.156 29.322
3.0 43.993 43.574 44.699

To show the ability of our approach to deal with chemi-
cal data, we use the triplicate absorbance readings y0y0y0 =
(14.804, 14.861, 14.731) from Table 1 to represent the
data from the second stage of the calibration model, which
is related to the true concentration 1.0, thus the response
variables yij, i = 1, 2, 4, 5 and j = 1, . . . , 3 belong to the
first stage calibration model. We consider the SN, ST, SSL
and SPE distributions from the SMSN class and as sugges-
ted by Lange et al. (1989) the log-likelihood was used for
choosing among values of τ .

Table 2: Parameter estimates for the ST, SN, SSL and SPE
distributions.

Distribution Parameters Criteria
α β x0 U(x̂0) AIC BIC

ST 0.497 14.195 1.002 0.003 -80.35 -76.80
(τ = 2) (0.019) (0.011) (0.002)
SN 0.300 14.290 1.004 0.045 -7.99 -4.45

(0.224) (0.112) (0.023)
SSL 0.491 14.198 1.002 0.004 -70.47 -66.93
(τ = 1.5) (0.002) (0.007) (0.002)
SPE 0.312 14.285 1.001 0.043 -9.03 -5.59
(τ = 0.8) (0.251) (0.125) (0.022)

Table 2 presents the parameter estimates, the estimated
asymptotic standard errors and the standard uncertainty
U(x̂0), which is the confidence interval amplitude divided
by 2, from the proposed calibration model for the ST, SN,
SSL and SPE distributions with appropriates values of τ .
Table 2 also shows information criteria values of AIC =
−2`(θ̂θθ) + 2k and BIC = −2`(θ̂θθ) + k log(R + m) as a
means of ranking each fitted model. The aim is to find the
model with the lowest value of the selected information cri-
terion. We observe that among the four distributions the
SPE distribution has the smaller vies and the ST distribu-
tion has the smaller standard error related to the parameter
x0, and according to the both criteria the ST distribution is
more suitable than the SN, SSL and SPE distributions.

4. Conclusions

In this work, we propose the SMSN calibration model which
has additional parameters that can be used for adjusting
skewness and heavy-tailedness simultaneously and pro-
vide more robust procedures than the ones that use the
SN (and normal) distribution, and that was observed in the
application section.
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